Math 2050, HW 2 (Due: Due: 7 Oct 2022)

- (1) If b > a > 0, show that the sequence $x_n = (a^n + b^n)^{1/n}$ is convergent with limit equal to b.
- (2) If $\{x_n\}_{n=1}^{\infty}$ is a sequence of positive real number such that $\lim_{n \to +\infty} x_n^{1/n} = L < 1$, show that x_n converges to 0 as $n \to +\infty$.
- (3) (a) Let $x_1 = 10$ and $x_{n+1} = x_n + \frac{2}{x_n}$ for all $n \in \mathbb{N}$. Determine whether $\{x_n\}$ is convergent or not.
 - (b) Let $x_1 = 1$ and $x_{n+1} = \sqrt{4 + x_n}$ for all $n \in \mathbb{N}$, show that $\{x_n\}$ is convergent. Find the limit.
- (4) Show that if the sequence $\{x_n\}_{n=1}^{\infty}$ satisfies $x_n \ge 0$ for all n and $\{(-1)^n x_n\}_{n=1}^{\infty}$ is convergent, then $\{x_n\}_{n=1}^{\infty}$ is convergent. Is the conclusion still true if we only assume $x_n \ge -1$?
- (5) If $\{x_n\}_{n=1}^{\infty}$ is a sequence which is bounded from above. Let $s = \sup\{x_n\}$. Show that either $s = x_N$ for some N or there is a subsequence x_{n_k} so that $x_{n_k} \to s$ as $k \to +\infty$.